Biointelligence

June 30, 2010

Discover regulatory DNA elements using chromatin signatures and artificial neural network

Filed under: Bioinformatics — Biointelligence: Education,Training & Consultancy Services @ 7:17 am

Recent large-scale chromatin states mapping efforts have revealed characteristic chromatin modification signatures for various types of functional DNA elements. Given the important influence of chromatin states on gene regulation and the rapid accumulation of genome-wide chromatin modification data, there is a pressing need for computational methods to analyze these data in order to identify functional DNA elements. However, existing computational tools do not exploit data transformation and feature extraction as a means to achieve a more accurate prediction.

Results: We introduce a new computational framework for identifying functional DNA elements using chromatin signatures. The framework consists of a data transformation and a feature extraction step followed by a classification step using time-delay neural network. We implemented our framework in a software tool CSI-ANN (chromatin signature identification by artificial neural network). When applied to predict transcriptional enhancers in the ENCODE region, CSI-ANN achieved a 65.5% sensitivity and 66.3% positive predictive value, a 5.9% and 11.6% improvement, respectively, over the previously best approach.

Availability and Implementation: CSI-ANN is implemented in Matlab. The source code is freely available at http://www.medicine.uiowa.edu/Labs/tan/CSIANNsoft.zip

Advertisements

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: