July 7, 2010

A more precise characterization of chaperonin substrates

Filed under: Bioinformatics — Biointelligence: Education,Training & Consultancy Services @ 11:23 am

Molecular chaperones prevent the aggregation of their substrate proteins and thereby ensure that they reach their functional native state. The bacterial GroEL/ES chaperonin system is understood in great detail on a structural, mechanistic and functional level; its interactors in Escherichia coli have been identified and characterized. However, a long-standing question in the field is: What makes a protein a chaperone substrate?

Results: Here we identify, using a bioinformatics-based approach a simple set of quantities, which characterize the GroEL-substrate proteome. We define three novel parameters differentiating GroEL interactors from other cellular proteins: lower rate of evolution, hydrophobicity and aggregation propensity. Combining them with other known features to a simple Bayesian predictor allows us to identify known homologous and heterologous GroEL substrateproteins. We discuss our findings in relation to established mechanisms of protein folding and evolutionary buffering by chaperones.